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Stress corrosion characteristics of 
toughened glasses and ceramics 

J.T. HAGAN, M.V. SWAIN, J.E. FIELD, 
P.C.S., Cavendish Laboratory, Madingley Road, Cambridge, UK 

A method for evaluating stress corrosion characteristics of thermally or chemically 
toughened glasses and ceramics is outlined. Values of the stress corrosion index 
n (V = A K  n) have been obtained and these are in excellent agreement with values for 
untreated materials. The analysis also explains the slightly greater absolute strength 
degradation observed for toughened glasses and ceramics. 

1. Introduction 
The extensive use of glasses and ceramics is limited 
by the relative weakness of these materials in 
tension. Their full potential is approached, how- 
ever, by the application of various toughening 
techniques, whereby high compressive stresses are 
induced chemically or thermally in the surface 
regions of these materials. These biaxial com- 
pressive stresses have to be overcome before 
fracture occurs. 

It has been shown by Kirchner and Walker [1] 
that the stress corrosion characteristics of 
toughened and untoughened alumina are the 
same and that the effect of the toughening is to 
provide sufficient strength at stress levels where 
failure usually occurs in untreated samples. 
Hagan and Swain [2] have made similar ob- 
servations on chemically toughened calcium 
alumino silicate. 

Attempts at using data from time to failure 
under static load or unnotched dynamic fatigue 
tests give anomalously high values of the stress 
corrosion index n for the toughened materials. 
Clearly the fracture stresses have to be corrected 
for the residual compressive stresses induced by 
the toughening. It is also apparent that the high 
tensile stresses in the middle of the toughened 
glasses or ceramics will have a significant effect 
on the times to failure, especially at stress levels 
not high enough to cause immediate failure. The 
analysis given here rationalizes the proper cor- 
rections to be applied to the stresses and the 

effect of the high tensile stress, in the central 
region, arising from the toughening. 

To ensure equilibrium of forces throughout 
these toughened glasses and ceramics, the surface 
compressive stresses are balanced bv internal 
tensile stresses. These internal stresses make it 
possible to determine the stable sub-critical 
crack growth rates using "macroscopic" cracks, 
as in, for example, the double torsion method. 
It is, however, still possible to obtain the stress 
corrosion characteristics from the time to 
failure or dynamic fatigue data; methods suggested 
by Evans and Johnson [3] for untoughened 
materials. The analysis presented here for 
toughened solids is an extension of their treatment. 

2. Analysis 
2.1. Residual t emper ing  stresses 
For both physically and chemically toughened 
glasses, the requirement for equilibrium is that 
the summation of the forces through the thick- 
ness, d, of the material must be zero; 

f oO(X)dx : 0 ( 1 )  

For thermally toughened glasses, the stress dis- 
tribution throughout the thickness is parabolic 
(Zijlstra and Burggraaf [4] ). Thus if the maximum 
compressive stress on the outer surfaces (x = 0, 
and x = d) is -- ac, the parabolic stress distribution 
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is of  the form 

ot = a c ( A x  ~ + B x -  1) (2) 

where A and B are constants. 
Consideration of  Equation 1 and the boundary 

conditions, reduces Equation 2 to 

6x 6x 2 
a t = - - %  1 d +--d 3-)  (3) 

where the compression zone on either surface 
is ~ 20% of  the plate thickness, and the maximum 
central tensile stress at x = d/2 is %/2 as suggest.ed 
by Zijlstra and Burggraaf [4]. The residual stress 
distribution is shown in Fig. la. 

In the case of  chemically toughened materials, 
the higher compressive stresses in the narrow 

[ 
[(ol 

-t- 

-t2_ 
q~ 

cr 6 �9 

Figure 1 Residual stress distribution in (a) thermally and 
(b) chemically, toughened glasses and ceramics of 
thickness d units. 
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surface layers are compensated for by a rather low 
and nearly constant tensile stress level over a large 
central region. The size o f  the compressive zone, 
6, is determined by the fabrication process. Within 
this narrow compressive zone, the stress distri- 
bution is approximately linear as observed by 
Varshneya and Petti [5]. According to Lawn and 
Marshall [6],  the stress distribution through the 
thickness is given by 

Get=--%(1--~)0 ~<x ~<6 (4a) 

( d + ~ ) d  6 ~ x < ~ d - - - -  Oct = -- (I c ] 

(4b) 

for the stresses in the compressive zones, and 

oct = oc(6/d) (4c) 

for the central zone, where 6 is the characteristic 
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Figure 2 Stress distribution in plate. Curves 1 and 2 are 
the residual stress o e and bending stress a~ respectively 
(aft = 2ae). The resultant of these is Curve 3. Curve 4 
is the resultant stress for o~ = 1.5 % (a e = 2.5 units). 



toughening depth and d is the specimen thickness. 
The stress profile through the thickness of  the 
glass arising for chemically toughened materials 
is illustrated in Fig. lb. 

The treatment given here is for thermally 
toughened glasses and ceramics, but the analysis 
is essentially the same for chemically toughened 
materials if the proper stresses are used. 

The stress distribution in a bar arising from 
flexure (four point bend test) is of  the form 

where a~ is the stress in the outer fibre (at x = 0). 
The resultant stress distribution (residual tough- 
ening stress and bending stress) is 

a = a t + a# (6) 

Substituting for at and a# from Equations 3 and 5 
respectively leads to 

o = ( o j - - o e ) + ~ - ( 6 a  e -- 2a~) - -  6ae (7) 

This resultant stress a for various values of a~/a~ 

is shown in Fig. 2. 

2.2. Stress  in tens i ty  f a c t o r  
For a straight, through-the-thickness crack, of 
infinite extent (with its origin at x = 0, and tip 
at x = e) in a single variable stress field of the 
form a = a (x), the stress intensity factor, as given 
by Paris and Silt [7], is 

/ ~,~2 c a ( x ) d x  (8) 
K 2Y(c) f o V ~ _ x  2 

where Y is a dimensionless factor dependent on 
the crack shape, e the final crack length and 
a(x) is the stress function normal to the crack 
path. Equation 8 holds for internal cracks in 
infinite solids. 

In the stress field defined by Equation 7 the 
stress intensity factor is given by 

where 

= ~-L ..J-at j 

and higher order terms are neglected. This 
equation only applies for a crack in an infinite solid. 
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Figure 3 Stress intensity factor at crack tip in plate 5 mm 
thick for the ratios of applied stress crj to residual stress 
o e of cr~]o e = 0, (Curve 1) 1.5 (curve 2), 2 (curve 3), 3 
(curve 4). a e = 60MPa. Dotted line is the position of 
Kle for soda lime glass. 

For values of c~d(c<O.ld), this is a good ap- 
proximation to the stress intensity factor for a 
semi-infinite solid in pure bending given by Brown 
and Srawley [8]. For larger values of  c/d, a com- 
plete analysis needs to incorporate the interaction 
with the opposite boundary. Assuming a value of 
60 MPa for the residual stress in a plate 5 mm thick 
and Y =  1, the stress intensity factors for 4 dif- 
ferent values a~ = 0, 1.5 ae, 2ae and 3 ae are 
plotted in Fig. 3. 

3. T ime to fai lure under constant load 
Knowing the stress intensity factor at the crack 
and a relationship between the crack velocity and 
the stress intensity factor driving the crack, one 
can obtain estimates of time of failure of com- 
ponents under the prescribed static stress. Since 
the basic difference between the toughened and 
untoughened material is the purely physical 
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residual stresses in the former, the stress corrosion 
characteristics should be the same for the two 
cases. Where the toughening is chemical, compo- 
sitional changes may give rise to differences in 
the corrosion characteristics. For most materials, 
it has beeh shown to be a good approximation that 
the velocity and the stress intensity factor are 
related through 

V = AK n (10) 

where A and n are constants dependent on the 
material and the environment in which propa- 
gation occurs. The time to failure of the material 
under ~tress is 

~--- r cf dc 
r Jci --V (1 la) 

or  

ef de 
~- = J ( l l b )  

c i AK n 

where ci and cf are the initial and final crack 

lengths respectively. 
Substituting for the stress intensity given 

by Equation 9 into 1 lb and assuming Y = 1, the 
time to failure becomes 

.ei~A(a~ dc [1 ~ ] n  (12) 
r = j - oo) C" + 

Since old < 0.1, Equation 12 reduces to 

= A(o  - 
c 

I1 - . 
not.._~c 

+ 
d "" 

_ _  ~ 6  

6~ 

(13) 

after taking the first 7 terms of the binomial ex- 
pansion of (1 + a c/d) -n. 

It is obvious from Fig. 3 that for o~ > 2ae 
(curves 3 and 4) the stress intensity factor does 
exceed the critical stress intensity factor at values 
of old < 0.05 and the assumption that a old < 1 is 
quite justified. Integration of Equation 13 leads to 

A(a;--%)n(Tr) [- 2c2-nnvo -, t ee  "r = -~ Z--~ M(x (14) 
Jei 
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where 

and 

r 
X ~ m 

d '  

M(x) = 1-- (n--2)  ) 

n(n + 1)(n + 2)(n + 3)(n + 4) [ 
(n -- 14) 6! (n + 5)a6x 6 

J 
(15) 

If n, the stress corrosion index, is large and initial 
stress intensity factor K < 0.9 KIe (the critical 
stress intensity factor), the time to failure r is 
dominated by the initial flaw size ei (Beaumont 
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Figure 4 Magnification factor M(x) as a function o f  the 
normalized crack length for soda lime glass, where n, the 
stress corrosion index is 16, for the ratios o f  applied 
stress tr~ to residual stress a e o f  a ~ [ %  = 1.5 (curve 1, 2 
(curve 2), 3 (curve 3). 



and Young [9], and Equation 14 reduces to 

2M(xi)ci (2-n) /2 
"r = A(a~ -- ae)n(Tr)n/2(n -- 2) (16a) 

The dimensionless factor M(x 0 may be regarded 
as a modifying term or magnification factor to 
the applied stress and becomes increasingly 
important as x -+ 0.1. 

The variation of the modifying factor M(x~) 
with c/d (< O.1) for values of o~/(re (which deter- 
mines a) < 3 is shown in Fig. 4 for soda lime glass 
which has a stress corrosion index of 16. The 
oscillation in M(xi) at low values of o~/a e is 
thought to arise from the limited number of terms 
chosen* for the plot of M(xi). For most practical 
situations (with un-notched specimens) the ratio 
c/d (typically c < 20#m and d > 3 mm) is very 
small (< 1%). Hence, the region of interest in 
the plot of M(xi) in Fig. 4 is the narrow zone 
of 0 < c / d < 0 . 0 1  where M(xf) decreases 
with increasing values of the normalized crack 
length. 

It is now possible to rewrite Equation 16a in a 
simplified form, as 

r(o~ --Oc) n = constant (16b) 

Similarly it can be shown that for the dynamic 
test, the modified expression relating the fracture 
stress o~ and the stress rate for either chemically 
or thermally toughened specimens is 

(o~--Oc)  "+1 = 76 (17) 

where Oc is the value of the residual stress in the 
outer fibre, 6 is the stressing rate and 7 is a 
constant incorporating the crack propagation 
constants A, n and the ratio of failure stress Oc and 
KIc (see Evans and Wiederhorn [10]). 

4. Discussion 
It has been shown that all the equations derived 
by Evans and co-workers for untoughened 
will hold for toughened materials, if proper cor- 
rections are made for the residual compressive 
stresses. Although the high tensile stress in the 
central region does not allow stable crack propa- 
gation studies to characterize the corrosion 
properties, one could still obtain the stress 
corrosion data fairly quickly from either time 
failure or dynamic fatigue data. 

Analysis of Kirchner and Walker's [1] data 

of the time to failure for toughened and un- 
toughened alumina shows that the stress cor- 
rosion index for untreated alumina in water is 
34. For thermally toughened alumina in water, 
the stress corrosion index is 70, which is 
anomalously high. When the fracture stresses are 
corrected, for the toughening residual stresses, 
one obtains a value of ~ 35. These values compare 
with the value of 31 obtained by Evans [11]. 

We have similarly obtained the stress corrosion 
index of 12 from time to failure data on "1020" 
toughened soda lime glass. Allowing for the rather 
limited number of data points and the un- 
certainty in the value of the residual compressive 
stress, the value of n ~ 1 2  is in reasonable 
agreement with values of 14.1 and 16 obtained 
by Evans [11] and Wiederhorn and Bolz [12] 
for soda lime glass in water. 

Ritter and Cavanagh [13] have recently 
reported studies on the fatigue resistance of 
surface recrystallized lithium alumino silicate. 
By correcting for the residual stresses in the 
as-drawn specimens, they have obtained ex- 
cellent agreement in the stress corrosion index 

for the as-drawn and annealed specimens. 
In conclusion, it is interesting to note that the 

observation by Kirchner and Walker, that the 
absolute decrease in strength of toughened 
alumina was slightly greater than that of the 
untoughened alumina, could be explained on the 
basis of this analysis. The slightly greater strength 
degradation for toughened structures is thought to 
arise from the decrease in the magnification 
factor M in Equation 16a, as the crack length 
increases. 

It can be seen from Fig. 4 that for the ratio 
o~/Oc< 3 (curve 1), there is a reduction in 
the magnification factor. Because of the initial 
assumption that n is large and K I < 0 . 9 K I c ,  
fracture will occur at very small values of xi (the 
normalized crack length) less than 1% and the 
reduction in M(x~) is insignificant. For lower 
vlaues of the initial bending stress and longer 
initial flaw sizes the reduction in r could become 
more significant. 

It is importnat to note that if the applied stress 
is not high enough to cause failure in a short time, 
the fact that the crack propagates into an in- 
creasingly tensile stress field, will cause an 
appreciable reduction in the failure time. 

*However when the number of terms in the expansion of M(x) equals n/2 a singularity occurs. 
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